Markdown(Typora)数学公式

Ctrl+Shift+M激活公式

上下标

a^2+\ b_{y_3}

$$
a^2+\ b_{y_3}
$$

括号

  • 中小括号

(a+b)*[c+2]
$$
(a+b)*[c+2]
$$

  • 大括号需要加\

\{1,2,3 \}
$$
{1,2,3 }
$$

  • 尖括号

\langle x \rangle
$$
\langle x \rangle
$$

  • 上下取整

\lceil x \rceil+\lfloor y\rfloor
$$
\lceil x \rceil+\lfloor y\rfloor
$$

  • 特殊括号

\begin{pmatrix} 1\ 2\\ 3\ 4 \end{pmatrix}\\ \begin{bmatrix} 1\ 2\\ 3\ 4 \end{bmatrix}\\ \begin{Bmatrix} 1\ 2\\ 3\ 4 \end{Bmatrix}\\ \begin{vmatrix} 1& 2\\ 3& 4 \end{vmatrix}\\ \begin{Vmatrix} 1& 2\\ 3& 4 \end{Vmatrix}\\
$$
\begin{pmatrix} 1\ 2\ 3\ 4 \end{pmatrix}\
\begin{bmatrix} 1\ 2\ 3\ 4 \end{bmatrix}\
\begin{Bmatrix} 1\ 2\ 3\ 4 \end{Bmatrix}\
\begin{vmatrix} 1& 2\ 3& 4 \end{vmatrix}\
\begin{Vmatrix} 1 & 2\ 3 & 4 \end{Vmatrix}\
$$

希腊字母

1.\alpha\ A\\ 2.\beta\ B\\ 3.\gamma\ \Gamma\\ 4.\delta\ \Delta\\ 5.\epsilon\ E\\ 6.\zeta\ Z\\ 7.\eta\ H\\ 8.\theta\ \Theta\\ 9.\iota\ I\\ 10.\kappa\ K\\ 11.\lambda\ \Lambda\\ 12.\mu\ M\\ 13.\nu\ N\\ 14.\xi\ \Xi\\ 15.\omicron\ O\\ 16.\pi\ \Pi\\ 17.\rho\ P\\ 18.\sigma\ \Sigma\\ 19.\tau\ T\\ 20.\upsilon\ \Upsilon\\ 21.\phi\ \Phi\\ 22.\chi\ X\\ 23.\psi\ \Psi\\ 24.\omega\ \Omega\\
$$
1.\alpha\ A\
2.\beta\ B\
3.\gamma\ \Gamma\
4.\delta\ \Delta\
5.\epsilon\ E\
6.\zeta\ Z\
7.\eta\ H\
8.\theta\ \Theta\
9.\iota\ I\
10.\kappa\ K\
11.\lambda\ \Lambda\
12.\mu\ M\
13.\nu\ N\
14.\xi\ \Xi\
15.\omicron\ O\
16.\pi\ \Pi\
17.\rho\ P\
18.\sigma\ \Sigma\
19.\tau\ T\
20.\upsilon\ \Upsilon\
21.\phi\ \Phi\
22.\chi\ X\
23.\psi\ \Psi\
24.\omega\ \Omega\
$$

根式分式

\sqrt[x+y]{\frac ab}+\sqrt{c+2\over 50+x}
$$
\sqrt[x+y]{\frac ab}+\sqrt{c+2\over 50+x}
$$

字体

ABCabc+\ \mathbb{ ABCabc}+\ \Bbb{ ABCabc黑板粗体}\\ ABCabc+\mathbf{ABCabc黑体}\\ ABCabc+\mathtt{ABCabc打印字体} \\ ABCabc+\mathrm{ABCabc罗马字体} \\ ABCabc+\mathscr{ABCabc手写字体} \\ ABCabc+\mathfrak{ABCabc德国字体Fraktur}
$$
ABCabc+\ \mathbb{ ABCabc}+\ \Bbb{ ABCabc黑板粗体}\
ABCabc+\mathbf{ABCabc黑体}\
ABCabc+\mathtt{ABCabc打印字体} \
ABCabc+\mathrm{ABCabc罗马字体} \
ABCabc+\mathscr{ABCabc手写字体} \
ABCabc+\mathfrak{ABCabc德国字体Fraktur}
$$

表格

\begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \\ \end{array}
$$
\begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \ \hline 1 & 0.24 & 1 & 125 \ 2 & -1 & 189 & -8 \ 3 & -20 & 2000 & 1+10i \ \end{array}
$$

矩阵

\begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{matrix}
$$
\begin{matrix} 1 & x & x^2 \ 1 & y & y^2 \ 1 & z & z^2 \end{matrix}
$$

向量等顶部符号

\vec{abc} \ ,\overline b\ ,\overrightarrow{cde} \ ,\dot c\ , \dot {adb}\ ,\ddot{acd}\ ,\dddot{adfe}
$$
\vec{abc} \ ,\overline b\ ,\overrightarrow{cde} \ ,\dot c\ , \dot {adb}\ ,\ddot{acd}\ ,\dddot{adfe}
$$

对其

需要使用&来指示需要对齐的位置

\begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\ & = \sqrt{\frac{73^2}{12^2} \cdot \frac{73^2-1}{73^2}} \\ & = \frac{73}{12} \sqrt{1 - \frac{1}{73^2}} \\ & \approx \frac{73}{12} \left( 1 - \frac{1}{2 \cdot 73^2} \right) \end{align}
$$
\begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \ & = \sqrt{\frac{73^2}{12^2} \cdot \frac{73^2-1}{73^2}} \ & = \frac{73}{12} \sqrt{1 - \frac{1}{73^2}} \ & \approx \frac{73}{12} \left( 1 - \frac{1}{2 \cdot 73^2} \right) \end{align}
$$

分类表达式

f(n) = \begin{cases} n/2, & \text{if $n$ is even} \\ 3n+1, & \text{if $n$ is odd} \end{cases}
$$
f(n) = \begin{cases} n/2, & \text{if $n$ is even} \ 3n+1, & \text{if $n$ is odd} \end{cases}
$$
\left. \begin{array}{l} \text{if $n$ is even:} & n/2 \\ \text{if $n$ is odd:} & 3n+1 \end{array} \right\} = f(n)
$$
\left. \begin{array}{l} \text{if $n$ is even:} & n/2 \ \text{if $n$ is odd:} & 3n+1 \end{array} \right} = f(n)
$$

公式标记与引用

a:= x^2-y^3 \tag{公式1}\label{公式1}
$$
a:= x^2-y^3 \tag{公式1}\label{公式1}
$$
a+y^3 \stackrel{\eqref{公式1}}=x^2

$$
a+y^3 \stackrel{\eqref{公式1}}=x^2
$$

其他

\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto
$$
\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto
$$
\lt \gt \le \ge \neq
$$
\lt \gt \le \ge \neq
$$

\sin x\\ \arctan_y\\ \lim_{1\to\infty}\\
$$
\sin x\
\arctan_y\
\lim_{1\to\infty}\
$$
\sum_1^n\ ,\int_1^{x+y}\
$$
\sum_1^n\ ,\int_1^{x+y}
$$

合集图片

20190703164359871